Chapter 3 – Quantile ARDL Model in R

Quantile regression is used when the variables are not normal and there appropriate transformations are not feasible. Consider a case of a variable which can have negative values and zeros so taking a log will not help in making data normal. Following tutorial will guide you how to estimate quantile regression for non stationary variables.

Quantile ARDL Model

Importing Libraries

library(quantmod) #Accessing online data
library(quantreg) #to get the function for quantile regression
library(forecast) #to generate the lag function
library(readxl) #importing excel file
library(tidyverse) # data manuplation
library(pastecs) # used descriptives
library(ggpubr) #normality test plots

df <- read_excel(“D:/UMT notes/MPhil – MS courses/Applied Econometrics/lectures applied econometrics/lecture 8/TIME SERIES r/logistics data.xlsx”)

df <- df %>% mutate(LGDP = log(GDP))
df$l.LGDP <- lag(df$LGDP, n = 1L)
df$l.IND <- lag(df$IND, n = 1L)
df$l.AGRI <- lag(df$AGRI, n = 1L)

stat.desc(df)

ggqqplot(df$LGDP)
ggqqplot(df$IND)

shapiro.test(df$LGDP)
shapiro.test(df$IND)

qregr <- rq(LGDP ~ l.LGDP + IND + l.IND + AGRI + l.AGRI, tau = 0.5, data = df)
summary(qregr)

qregrd <- rq(LGDP ~ l.LGDP + IND + l.IND, tau = seq(0.05, 0.95, by = 0.05), data = df)
summary(qregrd)
plot(qregrd)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top